Predicting the replicability of social and behavioural science claims from the COVID-19 Preprint Replication Project with structured expert and novice groups


Replication is an important “credibility control” mechanism for clarifying the reliability of published findings. However, replication is costly, and it is infeasible to replicate everything. Accurate, fast, lower cost alternatives such as eliciting predictions from experts or novices could accelerate credibility assessment and improve allocation of replication resources for important and uncertain findings. We elicited judgments from experts and novices on 100 claims from preprints about an emerging area of research (COVID-19 pandemic) using a new interactive structured elicitation protocoland we conducted 35 new replications. Participants’ average estimates were similar to the observed replication rate of 60%. After interacting with their peers, novices updated both their estimates and confidence in their judgements significantly more than experts and their accuracy improved more between elicitation rounds. Experts’average accuracy was 0.54 after interaction and they correctly classified 55% of claims; novices’ average accuracy was 0.55, correctly classifying 61% of claims. The difference in accuracy between experts and novices was not significantand their judgmentson the full set of claimswere strongly correlated (r=.48).These resultsare consistent with prior investigations eliciting predictions about the replicability of published findings in established areas of research andsuggest that expertise may not be required for credibility assessment of some research findings.